实数mn有f(m+n)=f(m)+f(n)且当x大于0时有f(x)<0,f(1)=-2/3,求f(x)=[-3,3]上的最值
人气:279 ℃ 时间:2020-03-24 23:04:50
解答
(1)以m=n=0代入,得:
f(0)=f(0)+f(0)
f(0)=0
(2)以m=x、n=-x代入,得:
f(0)=f(x)+f(-x)
f(x)+f(-x)=0
即:f(-x)=-f(x)
所以函数f(x)是奇函数
(3)设:x1>x2,则:
f(x1)-f(x2)
=f[(x1-x2)+x2]-f(x2)
=[f(x1-x2)+f(x2)-f(x2)
=f(x1-x2)
因为x1-x2>0,则:
f(x1-x2)
推荐
- 定义域在(0,+∞)上的函数f(x).对于任意实数m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)
- 设函数y=f(x)定义在R上,对于任意实数mn,f(m+n)=f(m)*f(n),且当X
- 实数mn有f(m+n)=f(m)+f(n)且当x大于0时有f(x)大于0,若f(1)=1,解不等式f[log2(x^-x
- 设f(x)的定义域(0,+∞),对于任意正实数m,n恒有f(m•n)=f(m)+f(n),且当x>1时,f(x)>0,f(1/2)=-1.(1)求f(2)的值;(2)求证:f(x)在(0,+∞)上是增函数;(3)解关于x
- 设函数f(x)的定义域是(0,正无穷)对于任意的正实数m,n恒有f(mn)=f(m)+f(n),且当x>1时,f(x)>0,f(2)=-1
- to his surprise ,this time there were six .
- 用形容词的适当形式填空 In this country it's very ------(cold)in November,and it's much
- he stepped into the room quietly without being noticed.后面的without being noticed是什么意思?
猜你喜欢