设数列{an}的前 项和为Sn.已知a1=-1,a(n+1)=Sn+3n-1,n∈N*.(1)求数列{bn}的通项公式?
(2)若bn=3^n+(-1)^(n-1) ·k·(an+3)(k为非零常数),问是否存在整数k使得对任意n∈N*都有b(n+1)>bn?若不存在,请说明理由
第一小题是求an
人气:196 ℃ 时间:2019-08-17 14:19:25
解答
(1)求 {an}的通项公式吧?这时还没有bn
a[n+1]=S[n]+3n-1
a[n]=S[n-1]+3(n-1)-1
a[n+1]-a[n]=a[n]+3
a[n+1]=2a[n]+3
a[n+1]+3=2(a[n]+3)
且 a[1]+3=-1+3=2
即 a[n]+3是以2为首项,2为公比的等比数列
所以 a[n]+3=2^n
a[n]=2^n-3
(2)
b[n]=3^n+(-1)^(n-1)*k*(a[n]+3)
=3^n+(-1)^(n-1)*k*2^n
=3^n-k*(-2)^n
令f(n)=b[n+1]-b[n]=3^(n+1)-3^n-k(-2)^(n+1)+k(-2)^n
=2*3^n+3k*(-1)^n*2^n
一、当k>0时
显然,当n为偶数时 f(n)>0
b[n+1]>b[n]是恒成立的
当n为奇数时
f(n)=2*3^n+3k*(-1)^n*2^n=2*3^n-3k*2^n
如果要 f(n)>0,必有
2*3^n-3k*2^n
=6(3^(n-1)-k*2^(n-1))>0
(3/2)^(n-1)>k
显然,当n=1时,k>0的整数是不存在的.
二、当k0
b[n+1]>b[n]是恒成立的
当n为偶数,且n>=2时
f(n)=2*3^n+3k*(-1)^n*2^n=2*3^n+3k*2^n
如果要 f(n)>0,必有
2*3^n+3k*2^n
=6(3^(n-1)+k*2^(n-1))>0
(3/2)^(n-1)>-k
这时,(3/2)^(n-1)是增函数,只要考虑 n=2时即可
n=2时,有k=-1存在
综上所述,存在整数k,且k=-1,使得对任意n∈N*都有b[n+1]>b[n]2*3^n+3k*2^n=6(3^(n-1)+k*2^(n-1))>0怎么转化为(3/2)^(n-1)>-k
推荐
- 设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项公式
- 设数列An的前n项和为Sn,已知a1=a,an+1=Sn+3n设Bn=Sn-3n次方,求数列Bn的通项公式
- 设数列{an}的前n项和为sn.已知a1=a,an+1=sn-3n,n∈N*,设bn=sn-3n,且bn≠0
- 已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+S(n-1)^2
- 高二数学-已知数列『an』中a1=2,a(n+1)=an+2n...若an+3n-2=2/bn,求数列bn的前n项和Sn.
- 一件工程,甲乙合作8天完成,乙丙合作12天完成,丙丁合作6天完成.问:甲丁合作多少天完成?
- 《墨子》中公输的原文和译文?
- 实验用玻璃仪器洗净后.是否都需要干燥
猜你喜欢
- 藏族同胞的藏袍反映了青藏高原上哪种气候特点
- 已知在正项等比数列{an}中,S8=4,a1a2a3a4a5a6a7a8=16,则1/a1+1/a2+1/a3+1/a4+1/a5+1/a6+1/a7+1/a8=多少
- I found that's inevitable in spite of I also tried to want to avoid bring bad mood into my work,
- 水,霜,雾,冰,露,雪,雨,云,水蒸气,冰雹,雾淞是怎样循环的
- 数量关系1,2,3,7,16,(),321
- 冰箱中的水珠是由食物中的水分经过--和--两种物态变化形成的
- 一个数的12倍比它的7倍多13.5,这个数是多少,列方程计算
- 春天的足迹作文600