∵
lim |
h→∞ |
1 |
h |
∵连续不一定可导,例如:f(x)=|x|在x=0处不可导.
∴A选项不正确
∵
lim |
h→0 |
f(a+2h)−f(a+h) |
h |
∴
lim |
h→0 |
f(a+2h)−f(a+h) |
h |
∴B选项不正确
∵
lim |
h→0 |
f(a+h)−f(a−h) |
2h |
3f′(a) |
2 |
∴C选项不正确
∴根据排除法得到
D选项正确
故选:D
lim |
h→+∞ |
1 |
h |
lim |
h→0 |
f(a+2h)−f(a+h) |
h |
lim |
h→0 |
f(a+h)−f(a−h) |
2h |
lim |
h→0 |
f(a)−f(a−h) |
h |
lim |
h→∞ |
1 |
h |
lim |
h→0 |
f(a+2h)−f(a+h) |
h |
lim |
h→0 |
f(a+2h)−f(a+h) |
h |
lim |
h→0 |
f(a+h)−f(a−h) |
2h |
3f′(a) |
2 |