设F圆锥曲线C一个焦点,与F对应的准线为L,AB为圆锥曲线C过F的弦,试分析AB为直径圆和准线的关系
人气:440 ℃ 时间:2019-10-14 03:02:02
解答
设AB中点(即圆心)为M,A、B、M到准线的距离分别为d1、d2、d,圆锥曲线的离心率为e,由圆锥曲线的第二定义有AF/d1=e,BF/d2=e,即AF=d1e,BF=d2e,两式相加得AF+BF=(d1+d2)e,即AB=(d1+d2)e,两边同除以2并将梯形中位线d=(d1...
推荐
- 设椭圆的左焦点为F,AB为椭圆中过点F的弦,试分析以AB为直径的圆与椭圆的左准线的位置关系.
- 设AB是过椭圆焦点F的弦,以AB为直径的圆与椭圆的焦点F对应的准线L的位置关系是
- 圆锥曲线过焦点的弦为直径的圆与对应的准线无交点,请问此圆锥曲线是
- 圆锥曲线中有关焦点弦的问题
- 设F圆锥曲线C的焦点,直线l式其相应准线,P是C上任意一点,求证:以PF为直径的圆与直线l相离、相交、相切的充要条件为C是椭圆、双曲线、抛物线.
- 若函数y=(2m²-m-3)x+m在区间【-1,1】上的最小值是1,实数m的值是——
- 已知函数f(X)=x2+ax+b,A={x|f(x)=2X}={2},试求a,b的值及f(x)
- 自东汉至西晋,北方少数民族大量内迁,出现这种现象的主要原因是( ) A.
猜你喜欢