设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.
试证:必存在ξ∈(0,3),使f′(ξ)=0.
人气:479 ℃ 时间:2020-02-04 03:05:42
解答
因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和最小值m,于是:m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,故:m≤f(0)+f(1)+f(2)3≤M,由介值定理知,至少存在一点c∈[0,2],使...
推荐
- 设函数在F(X)上连续,在(1,0)内可导,试证:至少存在一点ξ ∈(0,1),使f'(ξ )=2ξ[f(1)-f(0)]
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明在(0,1)内至少存在一点&,
- 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ、η∈(a,b),使得eξ-η[f(η)+f′(η)]=1.
- 已知函数y=f(X)在[0,1]连续,在(0,1)可导,f(0)=0,f(1)=1,证存在a属于(0,1)中使f(a)=1-a
- 如果函数f(x)在区间(a,b)内可导,且存在常数M使|f'(x)|小于等于M,试证f(x)在(a,b)内有界
- 4Na+O2=2Na2O反应和2Na+O2=Na2o2反应哪个是吸热反应哪个是放热反应?能说明理由吗?
- 16寸和40寸的数码照片分别是多少厘米啊?
- 你可以向他解释清楚是他理解你 用so.that怎么翻译,谢谢
猜你喜欢