> 数学 >
A是△BCD平面外的一点,E、F分别是BC、AD的中点,

(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.
人气:239 ℃ 时间:2019-10-20 19:20:46
解答
(1)证明:用反证法.设EF与BD不是异面直线,
则EF与BD共面,从而DF与BE共面,即AD与BC共面,
所以A、B、C、D在同一平面内,
这与A是△BCD平面外的一点相矛盾.
故直线EF与BD是异面直线.
(2)取CD的中点G,连接EG、FG,由于E、F分别是BC、AD的中点,
则EG平行且等于
1
2
BD,FG平行且等于
1
2
AC,
所以相交直线EF与EG所成的锐角或直角即为异面直线EF与BD所成的角.
由AC⊥BD,AC=BD,可得EG⊥GF,EG=GF.故等腰Rt△EGF中,有∠FEG=45°,
即异面直线EF与BD所成的角为45°.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版