设函数f满足以下条件:(1) f(x+y)= f(xy),对一切x,y属于R;(2) f(x)=1+xg(x),而limg(x)=1,试证明
f(x)在R上处处可导,且f‘(x)=f(x)
人气:251 ℃ 时间:2019-08-19 05:54:22
解答
设y=0
即f(y)=f(x+0)=f(x*0)=f(0),
f(x)在R上处处可导,
且f'(x)=[f(0)]' = 0.
1+xg(x)=f(x)=f(0).
lim_{x->-1}[1+xg(x)]=1-1=0=lim_{x->-1}[f(x)]=f(0)
所以,
f'(x)=0=f(0)=f(x)
推荐
- 设函数f满足以下条件:(1) f(x+y)= f(xy),对一切x,y属于R;(2) f(x)=1+xg(x),而limg(x)=1,试证明 f(x)
- 函数f(x)定义域R且为增函数,f(xy)=f(x)+f(y)证明f(x/y)=f(x)-f(y)
- 对于任意xy 有f(x+y)=f(x)f(y)且x>0,f(x)>1,证明f(x)在R上为增函数
- 设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0,f(1)=-2,Ⅰ证明F(X)是奇函数
- 若函数y=f(x)对任意xy∈R恒有f(x+y)=f(x)+f(y) (1)指出y=f(x)的奇偶性,并证明
- 铁锤锤蛋锤不碎加标点要两种意思不同
- 状语和谓语
- 巧填单位名称
猜你喜欢