f′(x)=x2+2ax+b,因为函数f(x)无极值,所以有△=4a2-4b≤0,即a2≤b.
又a-2b+3≥0,则满足条件的点(a,b)构成的区域如下阴影所示:
由
|
| 3 |
| 2 |
| 3 |
| 2 |
| 9 |
| 4 |
| b+1 |
| a+2 |
则斜率最大值为
| 1-(-1) |
| -1-(-2) |
设过点(-2,-1)的切线方程为b+1=k(a+2)①,a2=b②,由①②消b得a2-ka-2k+1=0,则△=k2-4(-2k+1)=0,解得k=-4+2
| 5 |
| 5 |
即斜率的最小值为-4+2
| 5 |
所以
| b+1 |
| a+2 |
| 5 |
故选C.
| 1 |
| 3 |
| b+1 |
| a+2 |
| 5 |
| 5 |
| 5 |
| 13 |
| 14 |
| 5 |
| 13 |
| 14 |
f′(x)=x2+2ax+b,
|
| 3 |
| 2 |
| 3 |
| 2 |
| 9 |
| 4 |
| b+1 |
| a+2 |
| 1-(-1) |
| -1-(-2) |
| 5 |
| 5 |
| 5 |
| b+1 |
| a+2 |
| 5 |