已知数列{a
n}满足a
1=2,a
n+1=a
n-
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)设b
n=na
n•2
n,求数列{b
n}的前n项和s
n.
人气:415 ℃ 时间:2019-08-18 01:35:58
解答
(Ⅰ)由an+1=an-1n(n+1)移向得an+1-an=-1n(n+1)=1n+1−1n当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(1n−1n−1)+(1n−1−1n−2)+…+(12−11)+2=1n+1.当n=1时,也适合上式,所以数列{an}的通...
推荐
猜你喜欢