证明最高次项系数为1的整系数多项式方程的有理数解必是整数
就是个初等数论题,一元高次方程,最高次数项的系数为1,求证这种方程的有理根必为整数?
人气:466 ℃ 时间:2020-01-25 06:20:21
解答
设解为x=a/b,a,b是整数,且(a,b)=1.
将x代入方程,两边乘b^n
a^n +k1a^(n-1)b+.+k0a0b^n=0
左边只有a^n不含有b
所以b|a^n
b=(b,a^n)=1
x=a是整数
推荐
猜你喜欢
- 关于一篇英语小作文
- 一辆汽车在平直的公路上向东快速行驶,一个人在该公路的便道上向东散步,如果以汽车作为参照物,则人
- 水何澹澹,——树木从生,——.——洪波涌起.
- 已知tana=2,求2/3sin^2a+1/4cos^2a
- 关于英语组句结构.
- 李清照为什么如此怀念项羽
- 求一道数学题解析:2,4,7,11,16,22.求第N个数
- 若关于x的不等式(a平方-1)x平方+(a+1)x+1大于0恒成立.求a取值范围