证明:如果整系数二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数.
人气:331 ℃ 时间:2019-08-20 07:25:18
解答
证明:假设a、b、c全为奇数△=b2-4ac>=0有:x=−b±b2−4ac2a,可见存在有理根,即设b24ac为有理数n,∴b2-4ac=n2,(b-n)(b+n)=4ac,∵若n为偶数,(b-n)(b+n)=奇数×奇数=奇数≠4ac,∴n只能为奇数,b-n为...
推荐
猜你喜欢
- photo,grendparents,the,are mythese ,in连成句子
- abc是三角形ABC的三边长,且满足a的平方+c的平方+2(b-a-c)=0.求各内角度数
- 如果方程ax+by=10的两组解为x=-1,y=0和x=1,y=5,那么a=( ),b=( ).
- 渔家傲 秋思赏析
- 若不等式(2x²+2mx+m)/(4x²+6x+3)
- 如图,在梯形ABCD中,AD∥BC,M,N分别是AD,BC的中点,E,F分别是BM,CM的中点. (1)证明:四边形MENF是平行四边形; (2)若使四边形MENF是菱形,还需在梯形ABCD中添加什么条件?请你写出
- 总是一个人的时候、该用什么词来形容?
- 数列3/5,4/5,15/17,12/13的通项公式?