已知道,如图,在⊙O中,弦AB,AC互相垂直且相等,OD⊥AO于D,OE⊥AC于E,求证四边形ADOE是正方形
人气:365 ℃ 时间:2019-08-19 06:33:19
解答
AB,AC为互相垂直的两条弦,且OD⊥AB于D,OE⊥AC于E,
所以四边形ADOE是矩形,
又AB=AC,OD⊥AB,OE⊥AC,
所以AE=AD(垂径定理)
所以四边形ADOE是正方形.
推荐
- 已知:如图,在点O中,弦AB,AC互相垂直且相等,OD⊥AB于D,OE⊥AC于E.求证:四边形ADOE是正方形?
- 已知:如图,在圆O中,弦AB,AC互相垂直且相等,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.
- 在圆O中.AB,CB为互相垂直且相等的两条弦,OD垂直于AB于D,OE垂直AC于E,求证四边形ADOE是正方形
- 已知:在圆O中,AB,AC为互相垂直的两条相等的弦,OD⊥AB,OE⊥AC.D,E为垂足.求证:ADOE为正方形
- 如图,圆O中弦AB垂直AC,OE垂直AC,OD垂直AB,垂足分别为A,D,E.若AB=AC,求证:四边形OEAD是正方形
- 哪一个食谱更健康?中译英
- a与b互质,均是c的因数,请证明a与b的乘积ab也是c的因数?
- 南极冰川现状如何
猜你喜欢