> 数学 >
大一高数连续函数问题
若f(x)∈C(a,b),af(ξ)=[f(x1)+f(x2)+...+f(xn)]/n成立.
求证明.
人气:448 ℃ 时间:2020-05-13 05:35:26
解答
加上条件f(x)在[x1,xn]上连续
由于连续,所以f(x)在[x1,xn]有最大值和最小值,分别设为M,m
令[f(x1)+f(x2)+...+f(xn)]/n=k显然m<=k<=M,再令g(x)=f(x)-k
在最大值点xi,最小值点xj有g(xi)=M-k>=0,g(xj)=m-k<=0
由介值定理,在[min(xi,xj),max(xi,xj)]上存在ξ,使g(ξ)=0,即
f(ξ)=k=[f(x1)+f(x2)+...+f(xn)]/n
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版