> 数学 >
已知a b c为互不相等的正实数 且a+b+c=1 求证1/a+1/b+1/c>9
如题
已知a b c为互不相等的正实数 且a+b+c=1
求证1/a+1/b+1/c>9
人气:167 ℃ 时间:2020-04-11 06:51:34
解答
利用均值不等式
a+1/(9a)>=2(a*1/(9a))^(1/2)=2/3.等号成立当且仅当a=1/(9a).a=1/3
同理,b+1/(9b)>=2/3.等号成立当且仅当b=1/3;c+1/(9c)>=2/3.等号成立当且仅当c=1/3
三式相加得a+1/(9a)+b+1/(9b)+c+1/(9c)>=2
1/(9a)+1/(9b)+1/(9c)>=1.1/a+1/b+1/c>=9
这里等号成立的条件是a=b=c=1/3.与条件不符
故1/a+1/b+1/c>9
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版