已知:在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连结AD、BE交于点P,作BQ⊥ AD,垂足为Q
求证:BP=2PQ 额,没图,
人气:352 ℃ 时间:2019-08-27 00:00:52
解答
先用“角边角”证明△ABE≌△CAD,
由于 AB=AC,∠BAC=∠C=60°,AE=CD,
所以 △ABE≌△CAD,
那么∠ABE=∠CAD
再证明∠BPQ=60°.
三角形的2个内角和等于第三个角的补角
所以:∠BPQ=∠ABE+∠BAD=∠CAD+∠BAD=60°
因此,∠PBQ=30°
所以BP=2PQ思路是什么啊,你怎么预先知道要证明△ABE全等于△ADC啊多做,首先逆向BP=2PQ且处于直角行明显得证∠BPQ=60显然得利用bpq=abp+bad 1下一步是关键线段AE=CD与角b关系不大,与角c呢关系大但太独立,所以用角a角a=bad+cad 2由1.2可知下部证明abp=cad下面证明△ABE全等于△ADC
推荐
- 已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连接AD、BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ.
- 已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连接AD、BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ.
- 已知等边三角形ABC中,D,E分别为BC,AC上的点,且AE=CD,连接AD,BE交与点P,过B作BQ
- 已知,△ABC是等边三角形,D、E分别是BC、AC边上的点,AE=CD,连接AD、BE相交于点P,BQ⊥AD于Q (1)求∠BPD的度数; (2)若PQ=3,PE=1,求AD的长.
- 已知:如图,在等边三角形ABC中,D、E分别为BC、AC上的点,且AE=CD,连接AD、BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ.
- 甲,乙两人由a地到b地.先走二小时乙再出发,结果乙比甲晚到十五分钟,已知甲的速度为每小时四千米,乙的速度是每小时六千米,求ab两地的距离.
- 求、一个英语作文 e-mail 内容是:我的家乡在石泉、这里山清水秀.100词左右、介绍家乡的.....
- 小勇在用计算器计算56*24时,发现计算器的键"5"坏了,你还能用这个计算器把正确的
猜你喜欢