> 数学 >
已知向量a=(√3Acosx,1),b=(sinx,A/2cos2x+B),函数f(X)=ab的最大值为6,最小值为-2.
求(1)A,B的值;(2)若f(0)=4设函数g(x)对任意x属于R,有g(x+π/2)=g(X),且当x属于(0,π/2)时,g(X)=2-f(X),求函数g(x)在[-π,0]上的解析式
人气:240 ℃ 时间:2019-08-20 04:34:53
解答
1
f(x)=a·b=(√3Acosx,1)·(sinx,Acos(2x)/2+B)
=√3Asin(2x)/2+Acos(2x)/2+B
=Asin(2x+π/6)+B
A>0时,f(x)的最大值:A+B=6
f(x)的最小值:-A+B=-2
即:A=4,B=2
A
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版