已知向量a=(√3Acosx,1),b=(sinx,A/2cos2x+B),函数f(X)=ab的最大值为6,最小值为-2.
求(1)A,B的值;(2)若f(0)=4设函数g(x)对任意x属于R,有g(x+π/2)=g(X),且当x属于(0,π/2)时,g(X)=2-f(X),求函数g(x)在[-π,0]上的解析式
人气:240 ℃ 时间:2019-08-20 04:34:53
解答
1
f(x)=a·b=(√3Acosx,1)·(sinx,Acos(2x)/2+B)
=√3Asin(2x)/2+Acos(2x)/2+B
=Asin(2x+π/6)+B
A>0时,f(x)的最大值:A+B=6
f(x)的最小值:-A+B=-2
即:A=4,B=2
A
推荐
- 向量a=(sinx,1),向量b=(根号3Acosx,A/2cos2x),A>0,函数f(x)=向量a*向量b的最小值为-6
- 已知向量m=(sinx,1),n=(√3Acosx,A/2cos2x),函数fx=向量m×向量n-1的最大值为3,1,求最小正周期T
- 已知向量m=(sinx,1),n=(根号3Acosx,A/3cos2x)函数fx=向量m×n最大值为6,求A
- 已知向量m=(sinx,1),n=(根号3Acosx,A/3cos2x)函数fx=向量m×n最大值为6,求A这是哪一年什么卷的高考题
- 已知向量m=(sinx,A/2*cos2x) 向量n=(√3Acosx,1)(A>0)函数f(x)=m.n+2的最大值为6(mn为向量)
- 上面三田下面缶,念什么啊,
- 离散数学题:递归式转为非递归式
- 在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点( ) A.高 B.角平分线 C.中线 D.边的垂直平分
猜你喜欢