已知f(x)=log2(x-1),设h(x)=f(x)+m/f(x),是否存正实数m,使得y=h(x)在[3,9]内的最大值值为4?
若存在,求出m的值
人气:120 ℃ 时间:2020-06-23 14:26:50
解答
f(x)=log2(x-1)在[3,9]是增函数,且根据定义域大于0,可知x>1.
又因为 log2(x-1)的倒数=log(x-1)2,因为x>1,其为增函数,
所以h(x))=f(x)+m/f(x)=log2(x-1)+mlog(x-1)2 且是增函数
在【3,9】上x=9时,log2(x-1)=3,log(x-1)2=1/3,函数有最大值:h(x)=3+m/3 ,
令h(x)=4解得:m=3
推荐
- 已知函数f(x)=|log2x|,正实数m,n满足m<n,且f(m)=f(n),则mn=_.
- f(x)=log2(x-1),h(x)=f(x)+m/f(x),是否存在正实数m,使h(x)在[3,9]上取得最小值为4
- 已知f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值是_.
- 已知函数f(x)=|log2(x+1)|,实数m,n在其定义域内,且m0;f(m2)<f(m+n)<f(n2)
- 设函数F(X)=X^3-9/2X^2+6X-a (1)对于任意实数x.f '(x)>=m 恒成立,求m的最大值
- 物理的题,功率和机械效率答案
- comunnicate什么意思?还有i can do this strange world怎么翻译比较好?
- 学校组织七年级学生参加活动原计划租42座客车16辆正好坐满,由于126名学生骑自行车,学校改变了租车方案
猜你喜欢