已知函数f(x)=|log2(x+1)|,实数m,n在其定义域内,且m0;f(m2)<f(m+n)<f(n2)
人气:155 ℃ 时间:2019-08-20 19:21:59
解答
m-log2(m+1)=log2(n+1)
所以,-10,mn<0,且:log2(n+1)+log2(m+1)=0
log2(n+1)(m+1)=0
(n+1)(m+1)=1
1+mn+m+n=1
m+n=-mn>0
f(m+n)-f(m^2)
=log2(m+n+1)-log2(m^2+1)
=log2(m+n+1)/(m^2+1)
=log2(1-mn)/(m^2+1)
>log2(1-mn)/(|m||n|+1)
=log2(1-mn)/(1-mn)
=log2 1
=0
所以,f(m^2)f(m+n)-f(n^2)
=log2(m+n+1)-log2(n^2+1)
=log2(m+n+1)/(n^2+1)
=log2(1-mn)/(n^2+1)
=log2(1-mn)/(1-mn)
=log2 1
=0
所以,f(m+n)所以,f(m2)<f(m+n)<f(n2)
推荐
- 已知函数f(x)=|log2x|,正实数m,n满足m<n,且f(m)=f(n),则mn=_.
- 已知函数f(x)=log2(x+1)的绝对值,实数m,n在其定义域内,且m不等于n,f(m)=f(n),则有
- 已知函数f(x)=|log2(x+1)|,实数m,n在其定义域内且m不等于n,f(m)=f(n)则m+n与0的关系
- 已知奇函数f(x)在定义域[-2,2]上单调递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.
- 已知函数f(x)=log2(a-2-x/x-a)是奇函数,若关于x的方程f-1(x)=m2^-X实数解求m的值
- 拷打羊皮露真相-群下咸无对者-翻译
- 为什么跳绳求克服重力做功题 求出G,题目给出跳起高度h 求做多少功时 h不用乘以2?跳起高度为h 还要落下h 所以跳一次高度应该是2h阿
- 城市化步伐的快速发展,使得生活节奏加快.生活水平的不断提高,家庭庭院也更多的出现在现代人的生活之中.庭院的设计五花八门,由于种种原因,往往缺乏合理的环境设计, 缺乏景观植物的种植设计,致使庭院环境不甚理想.如何改变这种尴尬局面,合理布置有限
猜你喜欢