设a为实属,函数f(x)=e^2-2x+2a,x属于R 求证:a>ln2-1且x>0时,e^2>x^2-2ax+1
人气:253 ℃ 时间:2019-08-24 04:45:21
解答
f'(x)=e^x-2>0,x>ln2f(x)的极小值(也是最小值)是f(ln2)=2-2ln2+2a.因为a>ln2-1,即f(ln2)=2-2ln2+2a>0,f(x)=e^x-2x+2a>0恒成立.设F(x)=e^x-x^2+2ax-1,F'(x)=e^x-2x+2a=f(x)>0.所以,F(x)为增函数.当x>0时,F(x)>F(0)=0,...
推荐
- 设a为实数,函数f(x)=e^x-2x+2a,求证,当a>ln2-1且x>0时,e^x>x^2-2ax+1
- 设a为实数,函数f(x)=ex-2x+2a,x∈R.(Ⅰ)求f(x)的单调区间与极值;(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
- 设a为实数,函数f(x)=ex-2x+2a (1)求单调区间和极值(2)求证当a>ln2-1且x>0时,ex>x2-2ax+1 (ex为e的x次
- 设a为实数,函数f(x)=e^x-2x+2a,x属于R.求,f(x)的单调区间与极值.2.求证:当a>ln2-1且x>0时,e^x>x^2-
- 已知函数y=1-2a-2ax+2x^2(-1≤x≤1)的最小值为f(a),
- 为什么等量同种正点电荷连线的中点电势最大
- 已知,a,b,c为三角形ABC的三边且满足A的平方+B的平方+164=12a+16b+16C试判断三角形abc的形状
- 地钱和地衣该如何分别
猜你喜欢