> 数学 >
设f(x)在[a,b]上二阶可导,且f″(x)<0,证明:
ba
f(x)dx≤(b-a)f(
a+b
2
).
人气:180 ℃ 时间:2019-08-20 04:10:21
解答
证明:∀x,t∈[a,b],将f(x)在t处展开,可得
f(x)=f(t)+f′(t)(x−t)+
f″(ξ)
2!
(x−t)2

因为f″(x)<0,所以有:
f(x)≤f(t)+f′(t)(x-t).
t=
a+b
2
,则有
f(x)≤f(
a+b
2
)+f′(
a+b
2
)(x−
a+b
2
)

将不等式两边从a到b积分可得,
ba
f(x)dx≤
ba
f(
a+b
2
)dx+
ba
f′(
a+b
2
)(x−
a+b
2
)dx

=(b−a)f(
a+b
2
)
+f′(
a+b
2
)
[
1
2
(x−
a+b
2
)2]
|ba
 
=(b−a)f(
a+b
2
)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版