an=2^(n-1),令bn=lna(3n+1)(3n+1为底数),n=1,2,···,求数列{bn}的前n项和Tn
人气:150 ℃ 时间:2020-05-29 09:43:06
解答
an=2^(n-1)bn=lna(3n+1)=ln2^(3n)b(n-1)=lna(3n-2)=ln2^(3n-3)=ln2^[3(n-1)]b(n-2)=lna(3n-5)=ln2^(3n-6)=ln2^[3(n-2)]...b2=lna7=ln2^(3*2)b1=lna4=ln2^(3*1)则 b1+b2+.+bn=ln2^(3*1+3*2+...+3*n)=ln2^[3*(1+n)...
推荐
- 数列An=3n,Bn=3^(n-1),求An/B(n+2)的前n项和Tn
- 已知数列an的前n项和Sn=n^2,设bn=an/3n,记数列bn的前n项和为Tn,求证Tn=1-(n+1)/3^n
- 等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn
- 等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n3n+1,则anbn=( ) A.23 B.2n−13n−1 C.2n+13n+1 D.2n−13n+4
- 等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n3n+1,则anbn=( ) A.23 B.2n−13n−1 C.2n+13n+1 D.2n−13n+4
- 神舟六号飞船由长征二号F型运载火箭经过9分52秒送入预定轨道.火箭速度是7.8千米,火箭送发射共飞行多少千
- 被名为孤独的名词而包围英文翻译
- 一个圆柱削去12平方厘米,正好削成一个等底等高的圆锥,这个圆柱的体积是多少?
猜你喜欢