设a、b、c为△ABC三边,证明:a(3a+2b+c)²-2b(b+c) +a-2b-2c≥0.
设a、b、c为△ABC三边,证明:9a³-2ab²+ac²+12a²b+6a²c-2abc-4b³-6b²c-bc²+a-2b-2c≥0
人气:171 ℃ 时间:2019-10-19 04:22:45
解答
9a³-2ab²+ac²+12a²b+6a²c-2abc-4b³-6b²c-bc²+a-2b-2c
=9a³+4ab²+ac²+12a²b+6a²c+4abc-6ab²-4b³-2b²c-6abc-4b²c-bc²+a-2b-2c
=a(3a+2b+c)^2-2(b+c)(3a+2b+c)+[a-2(b+c)].①
设3a+2b+c=x,a=A,-2(b+c)=B,[a-2(b+c)]=C
则①为Ax^2+Bx+C,原命题为证明:Ax^2+Bx+C≥0
A>0,△=B^2-4AC=-(b+c)^2+2a(b+c)-a^2
=-[(b+c)^2-2a(b+c)+a^2]
=-[(b+c)-a]^2
∵b+c>a,∴(b+c)-a≠0,∴[(b+c)-a]^2>0,∴-[(b+c)-a]^2
推荐
- 已知abc≠0,且a/b=b/c=c/a,则3a+2b+c/a-2c-3c
- 已知a,b,c为三角形ABC中角A,B,C的对边,且a²-a-2b-2c=0,a+2b-2c+3=0,求这个三角形的最大边
- 设a、b、c是三个互不相同的正数,如果a−cb=ca+b=ba,那么( ) A.3b=2c B.3a=2b C.2b=c D.2a=b
- 已知a、b、c为△ABC的三边,且满足2a²+2b²+2c²=2ab+2bc+2ac.试判断△ABC的形状.
- 三角形ABC的三边a,b,c之间有关系a-2b+c=0,3a+b-2c=0,则sinA:sinB:sinC等于
- This boox___a lovely dog A.looks at B.looks for C.looks like
- 风吹着雪.(改为比喻句)
- 4x平方-8x+1=0,解这个一元二次方程
猜你喜欢
- 在一只装水的烧杯内有一只装水的试管,用酒精灯使烧杯内的水沸腾,试管内的水也会沸腾吗?为什么?
- 土壤中无脊椎动物与其生活环境是如何相适应,相影响的?
- By the time we were sent to the village ,we ___ mostly 16 or 17 years old.
- 在同温同压下,两种物质的量相同的单质气体之间的关系正确的是 B.具有相同的体积 C具有相同的分子数
- 2130201:due to the high pressure of the rate of students and student's physical fitness is in deficiency,the knowledge o
- 求所有德甲球队的英文全名及中文解释(最佳有分)
- for the next two hours she was ___the film .so she didn't notice what happened around her A.engaged
- 均质细长直杆AB的质量为m,长度为l,可在铅垂面内绕A轴转动.若在图示杆与水平线夹角30°处将杆无初速释放,不计轴承处摩擦,试求该瞬时固定铰链支座A处的约束反力.