> 数学 >
求直线X=0,X=2,y=0与曲线y=x2所围成的曲边梯形的面积.
人气:260 ℃ 时间:2019-11-19 00:45:27
解答
定积分的几何意义:
就是在区间[a,b]内切分n份,n趋于正无穷,来计算小长方形面积之和.
即直线X=0,X=2,y=0与曲线y=x^2所围成的曲边梯形的面积为y=x^2在[0,2]的定积分.
即S=∫x^2dx|[0,2]=x^3|x=2-x^3|x=0=8/3
刚开始学有点难,以后慢慢理解就好了~
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版