| 1 |
| x2+4x+3 |
| 1 |
| (x+1)(x+3) |
| 1 |
| 2(1+x) |
| 1 |
| 2(3+x) |
| 1 | ||
4(1+
|
| 1 | ||
8(1+
|
又因为
| 1 |
| 1+x |
| ∞ |
![]() |
| n=0 |
故在−1<x<3中,
| 1 | ||
4(1+
|
| 1 |
| 4 |
| ∞ |
![]() |
| n=0 |
| (−1)n |
| 2n |
在−3<x<5中,
| 1 | ||
8(1+
|
| 1 |
| 8 |
| ∞ |
![]() |
| n=0 |
| (−1)n |
| 4n |
再注意到(-1,3)∩(-3,5)=(-1,3),
因此,f(x)=
| 1 |
| x2+4x+3 |
| ∞ |
![]() |
| n=0 |
| 1 |
| 2n+2 |
| 1 |
| 22n+3 |
| 1 |
| x2+4x+3 |
| 1 |
| x2+4x+3 |
| 1 |
| (x+1)(x+3) |
| 1 |
| 2(1+x) |
| 1 |
| 2(3+x) |
| 1 | ||
4(1+
|
| 1 | ||
8(1+
|
| 1 |
| 1+x |
| ∞ |
![]() |
| n=0 |
| 1 | ||
4(1+
|
| 1 |
| 4 |
| ∞ |
![]() |
| n=0 |
| (−1)n |
| 2n |
| 1 | ||
8(1+
|
| 1 |
| 8 |
| ∞ |
![]() |
| n=0 |
| (−1)n |
| 4n |
| 1 |
| x2+4x+3 |
| ∞ |
![]() |
| n=0 |
| 1 |
| 2n+2 |
| 1 |
| 22n+3 |