1 |
x2+4x+3 |
1 |
(x+1)(x+3) |
1 |
2(1+x) |
1 |
2(3+x) |
1 | ||
4(1+
|
1 | ||
8(1+
|
又因为
1 |
1+x |
∞ |
n=0 |
故在−1<x<3中,
1 | ||
4(1+
|
1 |
4 |
∞ |
n=0 |
(−1)n |
2n |
在−3<x<5中,
1 | ||
8(1+
|
1 |
8 |
∞ |
n=0 |
(−1)n |
4n |
再注意到(-1,3)∩(-3,5)=(-1,3),
因此,f(x)=
1 |
x2+4x+3 |
∞ |
n=0 |
1 |
2n+2 |
1 |
22n+3 |
1 |
x2+4x+3 |
1 |
x2+4x+3 |
1 |
(x+1)(x+3) |
1 |
2(1+x) |
1 |
2(3+x) |
1 | ||
4(1+
|
1 | ||
8(1+
|
1 |
1+x |
∞ |
n=0 |
1 | ||
4(1+
|
1 |
4 |
∞ |
n=0 |
(−1)n |
2n |
1 | ||
8(1+
|
1 |
8 |
∞ |
n=0 |
(−1)n |
4n |
1 |
x2+4x+3 |
∞ |
n=0 |
1 |
2n+2 |
1 |
22n+3 |