设n阶方阵A的伴随矩阵为A*,证明:(1)若|A|=0,则|A*|=0;
(2)|A*|=|A|^(n-1)
第一问可用反正法
人气:289 ℃ 时间:2019-08-21 04:09:02
解答
(1)
证:
如果r(A)
推荐
- 求证:设n阶方阵A的伴随矩阵为A*,若|A|≠0,则|A*|=|A|n-1
- 若n阶方阵A的伴随矩阵为A*,证明|A|=0
- 设n(n≥2)阶方阵A的伴随矩阵A*,证明若|A|=0,则|A*|=0
- 设A为n阶方阵,A*为A的伴随矩阵,证明:n,r(A)=n r(A*)= 1,r(A)=n-1 0,r(A)
- 设n阶方阵A可逆,A^*为A的伴随矩阵,证明|A^*|=|A|^n-1
- 求一篇成功类的作文 速度别抄作文选
- we could go for some food some time是什么意思?
- 初中七年级地理地球的自转和什么经线纬线的要学什么?有习题的话给我一些啊
猜你喜欢
- 有丝分裂中,细胞器怎么变化?
- 28-17+12-8=?
- 学校组织到野外旅游,每人准备一瓶矿泉水,单价是2元,只能整箱买,小箱10瓶打九折,打响20瓶打八折,全年
- 西方经济学中,为什么用L表示劳动投入,有K表示资本投入呢?
- 站在汽车上的人用手推车力为F,为什么脚对车有向后的摩擦力?怎么不是脚对车有向前的摩擦力?
- 妇姑荷箪食,童稚携壶浆.意思
- 英语翻译
- 刘备遇孔明的下一句是什么