1/2+1/6+1/12.+1/(n-1)n+1/n(n+1)
=1/1*2+1/2*3+1/3*4+...+1/(n-1)n+1/n(n+1)
=1-1/2+1/2-1/3+1/3-1/4+...+1/(n-1)-1/n+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
1/(x-4)(x-3)+1/(x-3)(x-2)+1/(x-2)(x-1)+1/(x-1)x+1/x(x+1)=1/x+1
1/(x-4)-1/(x-3)+1/(x-3)-1/(x-2)+1/(x-2)-1/(x-1)+1/(x-1)-1/x+1/x-1/(x+1)=1/(x+1)
1/(x-4)-1/(x+1)=1/(x+1)
1/(x-4)=2/(x+1)
2x-8=x+1
x=9