求极限lim(x→0) (e^x-x-1)/x
不用洛必达法则
人气:216 ℃ 时间:2019-12-01 12:16:51
解答
原式=lim [x→0] [(e^x-1)/x-1]设e^x-1=t,e^x=1+t,x=ln(1+t),当x→0时,t→0,lim [x→0] [(e^x-1)/x]=lim [t→0] {t/[ln(1+t)]=lim [t→0] {1/[ln(1+t)^(1/t)] =1/lne=1/1=1,∴原式=lim [x→0] [(e^x-1)/x-1]=1-1=0....第一行原式=lim [x→0] [(e^x-1)/x-1],为什么?(e^x-x-1)/x=(e^x-1)/x-x/x=[(e^x-1)/x]-1,拆成两项,第二项 x/x=1,再用重要极限lim [t→0][(1+t)^(1/t)]=e,lne=1,1-1=0.lim [t→0] {1/[ln(1 t)^(1/t)]=1/lnelim [t→0] {1/[ln(1+t)^(1/t)]=1/lne,这是两个重要极限之一,lim [x→∞](1+1/x)^x=e,或lim [x→0](1+x)^(1/x)=e,如果不用到这两条式,不用泰勒公式,不用洛必达法则,这题做不出来对吗?目前我还没有想到第4种方法.
推荐
猜你喜欢
- have you got___ink?sorry,i haven't got___用some还是any
- 填一个字,使成语完整
- 梨( )板在括号里填表示颜色的词语
- 这句话运用了夸张的手法,写出了我看到老班长不吃鱼汤时,心里怎么样
- 有一满瓶纯酒精为20L,倒出10L后,加满水再倒出5L溶液,在加满水,问现在酒精浓度?
- 有个地下储油罐,油罐主体是一个底面直径24m,深20m的圆柱体,它底部是个和上口等底的倒圆锥,
- everything you see I owe to spaghtti 是什么意思(中文翻译)
- 数码不同的两位数,将其两位数换位置,得到一个新的数,这个两位数的平方差是完全平方数,这个数是?