等差数列An=2n+1 Bn=1/An^2-1 求Bn前N项和Tn
人气:114 ℃ 时间:2020-05-18 03:47:00
解答
Bn=1/An^2-1=1/[(2n+1)^2-1]=1/(4n^2+4n)=1/4*1/[n*(n+1)]
又∵1/[n*(n+1)]=1/n-1/(n+1)]
∴Tn=1/4*[1/1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)]
=1/4*[1/1-1/(n+1)]
=1/4*[(n+1)/(n+1)-1/(n+1)]
=1/4*[(n+1-1)/(n+1)]
=n/(4n+4)
有什么不懂的请追问,我会为您详细解答,
推荐
- 等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn
- 等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n3n+1,则anbn=( ) A.23 B.2n−13n−1 C.2n+13n+1 D.2n−13n+4
- 设等差数列{an}{bn}的前n项和分别为Sn和Tn,求证an/bn=S(2n-1)/T(2n-1)
- 等差数列{an},{bn}的前n项分别为Sn,Tn,若Sn/Tn=2n/3n+1,则an/bn=多少?
- 等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1 ,则an/bn=
- 一儿曰:“我以日始出时去人近,而日中时远也.”怎么改间接引用句?
- 我明天就开学了,
- 已知x∈R,试比较x^4-2x^2+3x和x^2+3x+4的大小关系
猜你喜欢