| bx+1 |
| 2x+a |
| 1 |
| x |
b
| ||
2
|
| b+x |
| 2+ax |
则f(x)f(
| 1 |
| x |
| bx+1 |
| 2x+a |
| b+x |
| 2+ax |
则f(x)f(
| 1 |
| x |
| (bx+1)(b+x)−k(2x+a)(2+ax) |
| (2x+a)(2+ax) |
=
| (b−2ak)x2+(b2+1−4k−ka2)x+b−2ak |
| (2x+a)(2+ax) |
则
|
4a2k2-(4+a2)k+1=0,
解得,k=
| 1 |
| 4 |
| 1 |
| a2 |
若k=
| 1 |
| a2 |
| 2 |
| a |
与ab≠2相矛盾,舍去.
则k=
| 1 |
| 4 |
故答案为
| 1 |
| 4 |
| bx+1 |
| 2x+a |
| 1 |
| x |
| bx+1 |
| 2x+a |
| 1 |
| x |
b
| ||
2
|
| b+x |
| 2+ax |
| 1 |
| x |
| bx+1 |
| 2x+a |
| b+x |
| 2+ax |
| 1 |
| x |
| (bx+1)(b+x)−k(2x+a)(2+ax) |
| (2x+a)(2+ax) |
| (b−2ak)x2+(b2+1−4k−ka2)x+b−2ak |
| (2x+a)(2+ax) |
|
| 1 |
| 4 |
| 1 |
| a2 |
| 1 |
| a2 |
| 2 |
| a |
| 1 |
| 4 |
| 1 |
| 4 |