| 1 |
| 2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
令t=log2x,则y=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 8 |
∵2≤x≤4,
∴1≤t≤2.
当t=
| 3 |
| 2 |
| 1 |
| 8 |
∴函数的值域是[-
| 1 |
| 8 |
(2)令t=log2x,得
| 1 |
| 2 |
| 3 |
| 2 |
∴m<
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
设g(t)=
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
∴g(t)=
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| t |
| 3 |
| 2 |
∵g(t)=
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
∴当t=2时,g(t)min=g(2)=0,
∴m<0.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 8 |
| 3 |
| 2 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| t |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |