已知A与B均为非零矩阵,且AB=0,证明(1)A的列向量组线性相关
人气:476 ℃ 时间:2019-09-22 09:31:25
解答
若A的列向量线性无关、则Ax=0仅当x=0、故AB=0仅当B=0
推荐
- 设A和B是非零矩阵,满足AB=0,则B的行向量线性相关.这个怎么证明?
- 如果两个非零矩阵AB=0,则A的列向量组线性相关,B的行向量组线性相关,
- 设A为m*n矩阵,B为n*s矩阵,证明:AB=0的充要条件是B的每个列向量均为齐次线性方程组AX=0的解.
- 设A,B为满足AB=0的任意两个非零矩阵,则必有( ) A.A的列向量组线性相关,B的行向量组线性相关 B.A的列向量组线性相关,B的列向量组线性相关 C.A的行向量组线性相关,B的行向量组线
- 矩阵 证明:R(A)=1的充分必要条件是存在非零列向量a及非零行向量b^T,使得 A=ab^T.
- 大海对鱼游正如天空对() 勇士对( ) 正如懦夫对失败懒惰对贫困正如()对富裕()对大道正如崎岖对山路
- 已知函数f(x)=lnx/x,试求f(x)在[a,2a](a>0)上的最小值
- A为3阶方阵,|A|=-2,A*是A伴随矩阵,则|4A-1+A*|为多少
猜你喜欢