已知数列{an}的前n项和为Sn,对一切正整数,点(n,Sn)都在函数f(x)=2x+2-4.(,x+2是2的x+2方)
(1)求数列{an}的通项公式
(2)设bn=an*log2an,求数列{bn}的前n项和Tn
人气:132 ℃ 时间:2020-03-24 20:59:22
解答
Sn=2^n+2-4所以n>1时,Sn-1=2^n+1-4减得:an=2^n+1(n>1)n=1时,a1=S1=2^3-4=4=2^2合上式所以an=2^n+1bn=(n+1)*2^(n+1) 所以Tn=2*2^2+3*2^3+.+(n+1)*2^(n+1)两边2乘得;2Tn=2*2^3+3*2^4+.+n*2^(n+1)+(n+1)*2^(n+2)两式...
推荐
- 已知数列{an}的前n项和为Sn,对一切正整数,点(n,Sn)都在函数f(x)=2^(x+2)-4的图像上,1 求其通项公式 2 设bn=an×log2an 求bn的前n项和Tn.
- 已知数列{an}的前n项和为Sn,对任何正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,Sn)处的切线的斜率为Kn. (1)求数列{an}的通项公式; (2)若bn=2Knan,求数列{bn}的
- 已知函数f(x)=x2+2x,数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)的图象上,且过点Pn(n,Sn)的切线的斜率为kn. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若bn=2kn•an
- 已知函数f(x)=1/2x^2+3/2x,数列an的前n项和为Sn,点(n,Sn)[n属于N*]均在函数y=f(x)
- 数列an前n项和为Sn,对n属于正整数,(n,Sn)都在函数f(x)=2x^2-x上,
- 一队学生正以每小时6km的速度行进,老师有事要告诉排头,就以每小时10km的速度从排尾赶到排头,然后又以同样的速度返回排尾,一共用了7.5min,那么这列队伍的长度是多少?
- 11分之6加11分之5乘5分之3递等式计算
- can you help me with this problem?sorry,the problem is___difficult for me to work out
猜你喜欢