已知函数f(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是( )
A. [-4,4]
B. (-4,4)
C. (-∞,4)
D. (-∞,-4)
人气:447 ℃ 时间:2019-08-19 20:40:26
解答
当△=m2-16<0时,即-4<m<4,显然成立,排除D
当m=4,f(0)=g(0)=0时,显然不成立,排除A;
当m=-4,f(x)=2(x+2)2,g(x)=-4x显然成立,排除B;
故选C.
推荐
- 若函数f(x)=mx2-2x+3只有一个零点,则实数m的取值是_.
- 已知函数f(x)=1\3x^3-mx^2-3m^2x+1在区间(1,2)内是增函数,则实数m 的取值范围是?
- 41.15.已知函数f(x)=2x∧2+(4-m)x+4-m,g(x)=mx,若存在一个实数x,使f(x)与g(x)均不是正数,则实数m...
- 已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是( ) A.(0,2) B.(0,8) C.(2,8) D.(-∞,0)
- 已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,则实数m等于( ) A.2 B.-2 C.±2 D.0
- 英语中的问候语与祝福语的区别
- 我们生物课每天都要说一个小故事,关于生物的,到前面讲,时间规定于2分钟左右,提供2个小故事.我的同学
- 1.举例说明日常生活中你所见到的丁达尔效应. 2.探究中你发现或提出的问题.
猜你喜欢