已知F
1、F
2分别为椭圆C:
+
=1(a>b>0)的左、右焦点,椭圆C上的点A(1,
)到F
1、F
2两点的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标;
(2)设点K是椭圆上的动点,求线段F
1K的中点的轨迹方程.
(1)∵椭圆C:x2a2+y2b2=1(a>b>0)的焦点在x轴上,且椭圆上的点A到焦点F1、F2的距离之和是4,∴2a=4,即a=2;又∵点A(1,32)在椭圆上,∴122+94b2=1,∴b2=3,∴c2=a2-b2=1;∴椭圆C的方程为x24+x23=1,焦点F1...