已知f(x)=ax+(a-1)/x+2a-1,其中a>0,g(x)=lnx 1.若f(x)≥g(x)在x∈[1,+∞]恒成立,求正数a的取值范围.
2.(ⅰ)求证:当x>0时,xg(1+1/x)
人气:192 ℃ 时间:2020-05-25 08:13:08
解答
(1)h(x)=f(x)-g(x)=ax+(a-1)/x+2a-1-lnx,h'(x)=a-(a-1)/x^2-1/x=0,x=1,x=(1-a)/a若a>=1/2,(1-a)/a==0,a>=1/2,若a1,x=(1-a)/a为极小值点,f((1-a)/a)>=0,a>=1/2矛盾,故a>=1/2(2)取a=1/2,f(x)=(x-1/x)/2,由(1),f(x)>=g(...
推荐
- f(x)=ax+(a-1)/x+1-2a(a>0)若f(x)>=lnx在[1,+无穷大)上恒成立,求a的取值范围
- 已知函数f(x)=ax-1nx,若f(x)>1在区间(1,+∞)内恒成立,则实数a的范围为_.
- f(x)=1/2x^2-ax+(a-1)lnx,a>1 若g(x)=(2-a)x-lnx,f(x)≥g(x)在区间[e,正无穷]上恒成立,求a的取值范围
- 求a的取值范围,使得F(x)=lnx g(x)=ax^2+ax
- 已知函数F(X)=aX-lnX,若F(X)>1在(1,正无穷)内恒成立,求实数a的取值范围
- .一正项等比数列前11项的几何平均值为32.从这11项中抽去一项后所剩10项的几何平均值仍是32.
- 在静水中船速为20m每分钟,水流的速度为10m每分钟,若船从岸边出发,垂直于水流航线到达对岸的,问船行进的方向是 ? 求解,答案是与水流方向夹角120°不懂
- f(x)=√3 sin2x-2sin²x 怎么化简,
猜你喜欢