求数列1/2^2+4,1/4^2+8,1/6^2+12.1/(2n)^2+4n的前n项和和sn
人气:128 ℃ 时间:2020-03-28 11:36:13
解答
1/{2^2+4]+ 1[/4^2+8]+1/[6^2+12]+...+1/[(2n)^2+4n]consider1/[(2n)^2+4n]=1/[4n(n+1)]=(1/4)[1/n -1/(n+1)]1/{2^2+4]+ 1[/4^2+8]+1/[6^2+12]+...+1/[(2n)^2+4n]=(1/4) [ (1/1-1/2)+(1/2-1/3)+...+(1/n-1/(n+1)]=(1...
推荐
- 求数列(2+1/4),(4+1/16),(6+1/64).(2n+1/4n)的前n项和Sn
- 设数列{an}的前n项和Sn=(-1)^n(2n^2+4n+1)-1
- 设数列的前几项和Sn=2n^2-4n+1(n属于N+),求数列的通项公式
- 已知数列{an}的前n项和为Sn=4n^2-2n.n属于N+
- 数列2/2,4/2^2,6/2^3,……,2n/2^n,……的前n项的和sn=
- 一环形线圈放在匀强磁场中,设第1s内磁感线垂直线圈平面(即垂直于纸面)向里,如图甲所示.若磁感应强度B随时间t变化的关系如图乙所示,那么第3s内线圈中感应电流的大小与其各处所受
- 英译中I dont know why i told this to you today,but hope you will not let any person eles knows
- 若|a^n|=½,|b|^n=3,求(ab)^2n的值
猜你喜欢