> 数学 >
∫cos(1-cos2x)dx=
人气:323 ℃ 时间:2020-04-09 05:29:43
解答
∫cos(1-cos2x)dx
=∫2sin^xcosxdx
=∫2sin^xdsinx
=2/3 sin³x+C你倒过来求导看对吗看错题了,对不起。
∫cos(1-cos2x)dx

=∫cos(2sin^x)dx

=cos(2sin^x)x-∫x dcos(2sin^x)
=cos(2sin^x)x+∫x sin(2sin^x)*4sinxcosx dx
=cos(2sin^x)x+∫x sin(1-cos2x)*2sin2x dx
=cos(2sin^x)x-∫x sin(1-cos2x)*dcos2x
=cos(2sin^x)x+∫x dcos(1-cos2x)
=cos(2sin^x)x+x cos(1-cos2x)-∫cos(1-cos2)dx
2∫cos(1-cos2)dx=cos(2sin^x)x+x cos(1-cos2x)
∫cos(1-cos2x)dx=1/2[cos(2sin^x)x+x cos(1-cos2x)]+C
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版