在RT三角形ABC中,AC=2,BC=2,已知点P是△ABC内一点,则向量PC·(向量PA+向量PB)的最小值是?
P(X,Y),那设K=向量PC·(向量PA+向量PB)=2(x^2-x+y^2-y)
(X-0.5)^2+(Y-0.5)2=K/2-1/2
求Kmin,就是求(0.5,0.5)为圆心的圆的半径的最小值,
那不就是K/2-1/2>0,k>1,那没最小值了
可答案是kmin=-1,为什么?
人气:354 ℃ 时间:2019-10-18 08:00:48
解答
思路是对的,不等式反了
K/2+1/2>=0
k>=-1
以C为坐标原点建立直角坐标系,
C(0,0),A(0,2) B(2,0),设P点坐标为(x,y),
向量PC(PA+PB)=2(x^2-x+y^-y),
x^2-x+y^-y=(x-1/2)^+(y-1/2)^2-1/2,.(这里你配方有问题,是-1/2不是+1/2)
(x-1/2)^+(y-1/2)^2即为△ABC内一点到点(1/2,1/2)距离平方,
当其最小时向量PC(PA+PB)的最小,
因为点(1/2,1/2)也在△ABC内,
所以(x-1/2)^+(y-1/2)^2最小为0,
所以向量PC(PA+PB)的最小值=2(-1/2)=-1
如果本题有什么不明白可以追问,
推荐
- 已知三角形ABC的三个顶点,A、B、C及平面内一点P满足向量PA+向量PB+向量PC=向量AB,则点P与三角形ABC的...
- 在RtΔABC中,∠C=90.,若ΔABC所在平面内的一点P满足向量PA+向量PB+λ向量PC=0,则(|PA|^2+|PB|^2)/|PC|^2的最小值为________________
- P是△ABC所在平面上的一点,若向量PA·PB=PB·PC=PC·PA,则P是的什么心?
- 向量PA*PB=PB*PC=PC*PA,求证P为三角形ABC的垂心
- 已知P是三角形ABC所在平面内一点,若PA(向量)*PB(向量)=PB*PC=PC*PA,则P是三角形ABC的什么心?
- 已知x,y都是正数.若3x+2y=12,求xy的最大值.
- what ideas did you have about college life when you were in high school?
- 算一算如何将12枚硬币放在正方形的周长上,使得每一条边上都有5枚硬币,
猜你喜欢