椭圆C x^2/a^2+y^2/b^2=1,焦点F1,F2.斜率为k的直线L过右焦点F2与椭圆交A,B.L与Y轴交于P,线段PF2中点为B
(1)若k的绝对值小于等于5分之2倍的根号5,求椭圆C的离心率的取值范围
(2)若k=5分之2倍的根号5,A 、B到右准线距离之和为9/5,求椭圆C的方程
人气:276 ℃ 时间:2019-11-04 13:30:18
解答
我说一下思路吧!其实并不难,写起来费劲,希望你能采纳.
先设一次函数,用点斜式,这样未知数里面有K.将直线与Y轴的交点求出,即P点坐标.然后根据中点公式求出B点坐标,再将B点坐标代入椭圆方程,根据K的范围解出e的取值范围.第二问,已知K,根据第一问的关系式可以求出e,A,B到右准线的距离之和正好是AB长的e倍.可以求出AB横坐标之和,然后联立直线与椭圆的方程,得到关系式求出椭圆方程.
推荐
- 已知点P是椭圆16x2+25y2=1600上一点,且在x轴上方,F1,F2分别为椭圆的左、右焦点,直线PF2的斜率为-43,则△PF1F2的面积为( ) A.323 B.243 C.322 D.242
- 设F1,F2是椭圆的两个焦点,过F2作斜率为1的直线L,交椭圆于A,B两点.M为线段的中点,射线OM交椭圆于点C.若向量OA+向量OB=向量OC(O为原点)求椭圆离心率
- 椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左,右焦点分别是F1(-c,0),F2(c,0),过F1斜率为1的直线l与椭圆C相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列
- F1,F2分别是椭圆E:X^2 Y^2/b^2=1的左右焦点过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,BF2|成等
- 设F1,F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,求E的离心率
- 一个长方体的长、宽、高的长度中,宽是高的3倍,宽与高的长度和等于长.现将这个长方体横切1刀,竖切1刀,得到4个小长方体,表面积增加了200平方厘米,求原长方体的体积.187.5立方厘米,
- how to translate this,3q
- Something is wrong with my kitchen fan .(改为同义句)
猜你喜欢