> 数学 >
y=sinθ(cosθ)^2的最大值为
人气:309 ℃ 时间:2020-06-17 07:29:24
解答
周期是2π,所以只要看[0,2π)
y=sinθ-sin³θ
y'=cosθ-3sin²θcosθ=0
cosθ=0,sinθ=±√3/3
则最大值在极大值点或边界取到
因为y'的符号不容易判断
所以就不看是极大极小了
cosθ=0,则y=0
sinx=±√3/3
cos²θ=1-sin²θ=2/3
所以y最大=2√3/9
边界即θ=0,y=0
综上
y最大=2√3/9
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版