cosA=
| b2+c2−a2 |
| 2bc |
| 1 |
| 2 |
∴∠A=
| π |
| 3 |
(2)由正弦定理得:
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
∴b=2sinB,c=2sinC
∴b2+c2=4(sin2B+sin2C)=2(1-cos2B+1-cos2C)
=4-2cos2B-2cos2(
| 2π |
| 3 |
=4-2cos2B-2cos(
| 4π |
| 3 |
=4-2cos2B-2(-
| 1 |
| 2 |
| ||
| 2 |
=4-cos2B+
| 3 |
=4+2sin(2B-
| π |
| 6 |
又∵0<∠B<
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
∴-1<2sin(2B-
| π |
| 6 |
∴3<b2+c2≤6.
