已知函数f(x)=1/3x^3-2x^2+3x(x属于R)的图像为曲线C.(1)求曲线C上任意一点处的切线的斜率的取值范围.
(2)若曲线C上存在两点处的切线互相垂直,求其中一条切线与曲线C的切点的横坐标的取值范围.(3)试问是否存在一条直线与曲线C 同时且于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,请说明理由.
人气:120 ℃ 时间:2019-09-27 19:52:05
解答
1)、求导:f’(x)=x^2-4x+3=(x-2)^2-1由任意点处的斜率就是f'(x),f’(x)的值域为〔-1,+∞)所以曲线C上任意一点处的切线的斜率的取值范围〔-1,+∞)2)若曲线C上存在两点处的切线互相垂直,则切线的斜率范围在〔...
推荐
- 设函数y=f(x)在曲线上的切线斜率为3x^2-2x,且曲线过(-1,1),求该函数方程
- 设函数f(x)=-1/3x3+x2+(m2-1)x(x∈R),其中m>0. (1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率; (2)求函数f(x)的单调区间.
- 已知函数f(x)=1/(x+a),g(x)=bx^2+3x,若曲线h(x)=f(x)-g(x)在点(1,0)处的切线斜率为0,
- 设函数f(x)=-1/3x3+x2+(m2-1)x(x∈R),其中m>0. (1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率; (2)求函数f(x)的单调区间.
- 函数f(x)=x^3-3x^2+ax,x为R,且曲线y=f(x)的切线的斜率的最小值为1(1)求a的值(2)求f(x)在x=1的切线方
- 为什么1个水分子又2个氢原子和1个氧原子构成?
- 写出分别能被2,3,5整除的数的特征,写出能同时被2,3,3,5,2,5 2,3,5,整除的数的特征
- 是的,我是一叶不系之舟,曾经那样安恬地依偎在未名湖的臂抱里,在我的心无时无刻不在向往大海的波涛.
猜你喜欢