如图所示,平行四边形ABCD中,E、F分别为AD、BC的中点,AF与BE相交于G,DF与CE相交于H,连接EF、GH.
求证:EF、GH互相平分.
人气:409 ℃ 时间:2019-08-18 00:09:07
解答
令AC与EF交于O点,
∵ ABCD是平行四边形,
∴ ∠CAE=∠ACF,又AE=CF,∠AME=∠CMF,三角形AME≌三角形CMF
∴ O为AC,EF的中点
令AC与GH交于O'点,同样,我们得到,O'为AC,GH的中点
所以,O与O'重合,EF与GH互相平分.
推荐
- 如图在平行四边形ABCD中,点E、F分别在AD、BC上,AE=CF,AF、BE相交于G,CE、DF相交于H,说明EF和GH互相平分
- 如图所示,在平行四边形ABCD中,E、F分别是AD、BC的中点,AF与BE相交于点G,DF与EC相交于H,连接EF GH
- 如图,在平行四边形ABCD中,E、F分别为AD、BC的中点,AF与BE相交于点G,DF与CE相交于点H,连接EF、GH.求证;EF、GH互相平分
- 如图 在平行四边形abcd,点EF分别是边AD BC的中点,AC分别交BE DF余GH并有下列结论
- EF分别是平行四边形ABCD一组对边ADBC的中点连接AF,BE相交于点G连接EC,DF相交于点H GH=1/2BC
- sinx+cosx=根号6/2,0
- "I will never leave
- 如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB的中点,连接EF且CF⊥AD,点E是AB的中点,连结EF(1)AC=6,BC=10求EF的值(2)若△AEF的面积是1,求梯形DBEF的
猜你喜欢