如图,在平行四边形ABCD中,E、F分别为AD、BC的中点,AF与BE相交于点G,DF与CE相交于点H,连接EF、GH.求证;EF、GH互相平分
人气:135 ℃ 时间:2019-08-18 13:43:42
解答
连接顺次连接GF、FH、HE、EG成四边形GFHE,因为HE是三角形ACD的中位线,HE平行且等于CD的一半,GH是三角形DBC的中位线,FG平行且等于CD的一半,所以 FG与HE平行且相等,可证明四边形GFHE是平行四边形,而平行四边形对角线互相平分,所以EF与GH互相平分.
推荐
- 如图所示,在平行四边形ABCD中,E、F分别是AD、BC的中点,AF与BE相交于点G,DF与EC相交于H,连接EF GH
- 如图所示,平行四边形ABCD中,E、F分别为AD、BC的中点,AF与BE相交于G,DF与CE相交于H,连接EF、GH.
- 如图在平行四边形ABCD中,点E、F分别在AD、BC上,AE=CF,AF、BE相交于G,CE、DF相交于H,说明EF和GH互相平分
- 如图 在平行四边形abcd,点EF分别是边AD BC的中点,AC分别交BE DF余GH并有下列结论
- EF分别是平行四边形ABCD一组对边ADBC的中点连接AF,BE相交于点G连接EC,DF相交于点H GH=1/2BC
- 五环电阻棕、绿、黑、黑、棕怎么读?
- 国庆长假,大街上什么什么(写两个体现人多的成语)
- 有一桶油,油和桶共重52千克,倒出一半油后,这时连桶共重27千克,原来桶里有多少克油?如题 谢谢了
猜你喜欢