,已知z是复数,z+2i与z/2-i 均为实数.(1)求实数Z (2)复数Z在复平面内对应点在几象限.
人气:393 ℃ 时间:2019-10-24 01:07:21
解答
已知z是复数,z+2i与z/2-i 均为实数,
所以,z可以写为:m-2i (m是实数)
z/2-i 进行分母实数化,分子分母同时乘以(2+i)得:(2m+2+mi-4i)/5 是实数
所以,m=4
所以,z=4-2i 这复数在复平面内对应的点是(4,-2),在第四象限.
完毕.
推荐
- 已知z是复数,z+2i,z/2-i均为实数,且(z+ai)^2的对应点在第一象限,求实数a的取值范围.
- 已知z为复数,z+2i和z/2−i均为实数,其中i是虚数单位. (Ⅰ)求复数z; (Ⅱ)若复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.
- 已知z是复数,z+2i与z/2-i 均为实数,且复数(z+ai)^2 在复数平面上的对应点在第一象限,求a的取值范围
- 已知复数z满足|z-i|=1,有复数满足(w/w-2i)[(z-2i)/z]是一个实数,求复数w在复平面内的对应点轨迹.
- 已知z是复数,z+2i,z/2-i均为实数,且复数(z+ai)²在复平面上对应的点在第四象限
- 自来水漂白粉!
- 选出下列各组字母中含有相同音素的选项
- 翻译下列短语 1.四处游动 2.摆弄,玩弄 3.喂兔子胡萝卜
猜你喜欢