> 数学 >
已知1^2+2^2+…+n^2=1/6n(n+1)(2n+1),计算:(1)11^2+12^2+…+19^2=( )(2)2^2+4^2+…+50^2=( )
人气:373 ℃ 时间:2020-04-16 07:31:40
解答
设f(n)=1^2+2^2+…+n^2=1/6n(n+1)(2n+1),
则:
(1)11^2+12^2+…+19^2
= f(19)-f(10)
=2085
(2)2^2+4^2+…+50^2
=2^2(1^2+2^2+……+25^2)
=4f(25)
=22100
代入计算就可以了.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版