lim[(x^2+1)/(x+1)-(ax+b)]=1其中x趋近无穷大 ,求常数a,b的值
人气:423 ℃ 时间:2020-05-19 07:51:51
解答
lim【x→∞】[(x²+1)/(x+1)-(ax+b)]
=lim【x→∞】[(x²+1)-(x+1)(ax+b)]/(x+1)
=lim【x→∞】[(1-a)x²-(a+b)x+1-b]/(x+1)
=1
因为上面的极限存在
所以1-a=0
-(a+b)=1
解得a=1
b=-2
推荐
- 设lim((x^2+1)/(x+1) -ax-b)=0,求a,b.x趋向无穷大
- 试确定常数a使lim[(1-x^3)^1/3-ax]=0(x趋于无穷大)
- 已知lim x→∞[x^2+1/x+1-(ax+b)]=0,求常数a,b.
- 若lim(x-0)[(x^2/x+1)-ax-b]=0,求常数a,b
- 求lim(x→正无穷大)((√x ^2-x+1)-ax-b)=0,试求常数a,b 不然我看不懂
- there isn't enough ___for us to the lift.Let's wait for the next.
- 已知向量a,b满足|a|=|b|=1,且|ka+b|=根号3|a-kb|(k>0),
- 判断12月10日这一天济南的昼夜长短情况并说明此时气候特点
猜你喜欢