如图,已知AB是⊙O的直径,CD是弦,AE⊥CD交DC的延长线于E,BF⊥CD交CD的延长线于F.
(1)求证;EC=FD
(2)如果把CD向上平移,使弦CD与AB相交,其余条件不变,结论是否成立?若成立,给出证明;若不成立,说明理由.
人气:498 ℃ 时间:2019-12-07 21:49:30
解答
(1)证明:作OM垂直于CD于M,
则 CM=DM(垂径定理:垂直于弦的直径平分弦)
因为 AE垂直于CD于E,BF垂直于CD于F,
所以 AE//OM//BF,
因为 AB是圆O的直径,AO=BO,
所以 EM=FM(平行线等分线段定理),
所以 EM--CM=FM--DM,
即:EC=FD.
(2)如果把CD向上平移,使弦CD与AB相交,其余条件不变,结论EC=FD仍成立.
理由与(1)完全相同.
推荐
- 已知,AB是⊙O的直径,弦CD⊥AB,E是AC上的一点,AE,DC的延长线相交于点F,求证:∠AED=∠CEF.
- 如图,梯形ABCD中,AB∥DC,E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF,四边形ABFC是什么四边形?请说明理由.
- 1.如图,已知梯形ABCD中,AB平行CD,E是BC的中点,AE,DC的延长线相交于点F,连接AC,BF
- 如图,AB是⊙O的直径,CD是弦,CE⊥CD交AB于E,DF⊥CD交AB于F,求证:AE=BF.
- 已知:如图,△ABC中,D在AC上,且AD:DC=1:2,E为BD的中点,AE的延长线交BC于F, 求证:BF:FC=1:3.
- 关于人工智能
- 用“光彩”的不同意思造两个句子,马上就要,
- 欧式空间R^n中又线性无关的向量组a1,a2...am.用特定的方法可以产生一组标准正交化向量b1,b2,.,bm.满足下列要求:span{a1,a2.ak}=span{b1,b2.bk}k=1,2,...,m.其中span为张成的子空间,
猜你喜欢