3阶方阵A的特征值为1,-1,2,则|A^2-2E|=
人气:485 ℃ 时间:2020-05-20 12:39:36
解答
由特征值的定义有
Aα=λα,α≠0 (λ为特征值,α为特征向量)
则有A^2α=A(λα)=λAα=λ^2α
即有(A^2-2E)α=(λ^2-2)α
也就是说如λ是A的特征值,那么λ^2-2就是A^2-2E的特征值
所以特征值为-1,-1,2
则所求矩阵的行列式的值为其特征值的乘积,结果为 2
推荐
- 设3阶方阵A的特征值为1,-1,2,求|A*+3A-2E|.
- 三阶方阵A的特征值是1.-2.3.则|A-1| |A| |A*| |A-2E|为多少?
- 设A为3阶方阵,特征值为1,2,-3,求A^2-3A+A^-1+2E的特征值,及|A^2-3A+A^-1+2E|,希望能给出过程.
- 设A为三阶方阵,特征值为1,2,-3,求A∧2-3A+A∧(-1)+2E和|A∧2-3A+A∧(-1)+2E
- 若3阶方阵A与B相似,A的特征值为1,-1,2,则(B*)^-1-2E的特征值是
- 求圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆的方程.
- 1.一辆越野车在沙漠中行驶32.5千米耗油5.2升.它要跨越的无人区总路程为1303千米,至少要准备多少升汽油?(得数保留整数)
- 住院时我很难过,怎么翻译?
猜你喜欢