已知函数f(x)=-1/4x^4+2/3x^3+ax^2-2x-2在区间[-1,1]上单调递减,在[1,2]上单调递增
求实数a的值 求函数f(x)的极值
人气:122 ℃ 时间:2019-09-13 20:49:31
解答
f(x)=-1/4x^4+2/3x^3+ax^2-2x-2f'(x)=-x^3+2x^2+2ax-2由于在区间[-1,1]上单调递减,在[1,2]上单调递增∴x=1是一个零点即f'(1)=0-1+2+2a-2=0a=1/2f(x)=-1/4x^4+2/3x^3+1/2x^2-2x-2f'(x)=-x^3+2x^2+x-2=-(x-1)(x+1)(x-2...
推荐
- 已知函数f(x)=-1/4x^4+2/3x^3+ax^2-2x-2在区间[-1,1]上单调递减,在[1,2]上单调递增,a=1/2
- 已知f(x)=4x+ax2−2/3x3(x∈R)在区间[-1,1]上是增函数,求实数a的取值范围.
- 已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2]上单调递减. (1)求a的值; (2)记g(x)=bx2-1,若方程f(x)=g(x)的解集恰有3个元素,求b的取值范围.
- 已知函数f(x)=(1/3)^(ax^2-4x+3) 1 ,已知a=-1,求函数f(x)的单调区间.2,若f(x)有最大值3,求a的值
- f(x)=1/3x^3-ax^2=4x,y=(x)在点(1,f(1))处的切线倾斜角为π/4,求a.若函数y=f(x)在区间【0,2】上单调递增
- 先读懂古诗,然后回答诗中问题. 巍巍古寺在山林,不知寺内几多僧. 三百六十四只碗,看看用尽不差争. 三人共食一碗饭,四人共吃一碗羹. 请问先生明算者,算来寺内几多僧. 则共
- 一块农田,甲拖拉机要8小时耕完.
- 把半径为2的四个小球垒成两层放在桌子上,下层放3个,上层放1个,两两相切.求上层的最高点离桌面的距离?
猜你喜欢
- 把1\3(就是三分之一,我这么打的)0.91、2\3、0.5、4\15、1.01、7\8按从小到大的顺序排出来.
- He worked without __ success .As a doctor ,he was not_ success.
- 已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.
- whatever it takes or how my heart breaks,I will beright here waiting for you .
- 修建青藏铁路克服了什么困难,采取了什么办法
- 圆的面积S随着它的半径R而变化,用公式法表示它们的函数关系;指出公式中哪些是变量,那些是常量.
- 若命题甲:复数z=a^2+b^2+2abi是实数(a,b)属于实数,写出命题甲的一个充分非必要条件
- 已知空集真包含于m,m包含于n,且若x属于m,6-x也i属于m.则集合m最多含几个元素